

Building a Resilient City: The Place of Geospatial Science & Technology

Dr. Richard Irumba
Deputy Director Physical Planning
KCCA

Together we can transform Kampala city

Profile of Kampala City

City Population:

60%

Resident popn is est. at **1.5 million** while day population est. at **4 million**.

5.2%

The city's contribution to - Uganda's GDP.

The current urban population growth rate

10 Million

Projected population by 2040 (source: KPDP).

lational population statistics:

- Fertility rate: 6.9 children per woman cf: Kenya: 4.7, Tz: 5.6, Nigeria: 5.9.
- Growth rate: 3.6% per annum; 4th highest in the world cf: Liberia: 3.7%, Emirates: 3.8%, Maldives: 5.6%;... Nigeria: 2.5%.

Kampala's Current Realities

Fastest growing cities on the continent At an urbanization rate

of 5.2%

Growing slums juxtaposed with

urban affluence

Inadequate City Financing

Current
development
characterized by
uncontrolled and
unplanned
settlements

Insufficient infrastructure

Definitions

Resilience

The ability of a system, community or society exposed to hazards to resist, absorb, accommodate, adapt to, transform and recover from the effects of a hazard in a timely and efficient manner

Resilient City

A city that is able to absorb, adapt, and recover from the shocks and stresses that are likely to happen, transforming itself in a positive way toward sustainability (UN-Habitat)

Kampala City Hazards

HAZARD	HAZARD TYPE	HAZARD LEVEL
Flood	Climatological and Meteorological	
Human Epidemic	Ecological and Biological	
Environmental Degradation	Human-induced or Technological	HIGH
Water Pollution	Human-induced or Technological	Tildii
Air Pollution	Human-induced or Technological	
Fire and Built Environment	Human-induced or Technological	
Road Accidents	Human-induced or Technological	
Drought / Dry Spells	Climatological and Meteorological	
Soil Erosion	Geological	MEDIUM
Food Security / Nutrition	Climatological and Meteorological /Human-induced or technological	
Earthquake	Geological	LOW

Notes: Floods dominate Kampala's risk profile affecting more than 170,000 people; the average annual damage from floods is estimated to be US\$49.6 Million

Source: Kampala Disaster Risk and Climate Change Resilience Strategy, 2020)

Strategies of Building a Resilient City

- ➤ Institutional & Governance Strengthening; improve regulatory and policy framework, inter-institutional coordination for risk mgt., M&E for institutional risk management.
- Understanding Risk; surveillance networks, risk audits, community awareness...
- Invest in Disaster Risk Reduction for Resilience incl. reducing the vulnerability of key physical infrastructure.

Strategies of Building a Resilient City...

Preparedness, Response & Resilient Recovery; define early warning signs, develop recovery strategy ...

- Climate Mitigation & Resilience; improve air quality, reduce emissions and protect green areas
- ➤ Health Resilience & Prevention; health prevention measures, awareness and emergency preparedness.

Application #1: Flood Risk Mapping

Application #1: Flood Risk Mapping...

Application #1: Flood Risk Mapping...

Where is Flood Risk Highest?

Spatial variability of Average Annual Losses (AAL)

Spatial distribution of people at risk from frequent flooding (10% annual probability)

Application #2: Disaster Mgt.; the City Address Model

City Address Model (CAM)

- Naming all roads and streets
- Assigning numbers to all houses
- Ease navigation, promote economic activities (e.g. tourism), facilitate disaster mgt. (e.g. locate fire incident sites) etc.

Application #3: Earthquake Monitoring using Geodesy/GNSS

- ➤ Catastrophic events such as major earthquakes and volcanic eruptions result when the earth's crust fails in response to accumulated deformation
- Aseismic deformation of subcrustal rock is associated with relative plate motions, or the ascent of magma through a volcanic plumbing system
- ➤ Geodetic measurements (space & time domains) document the crustal deformation providing unique insights into the physical processes involved.

Reference: Kenneth, W. Hudnut (1995), Earthquake Geodesy and Hazard Monitoring. *Reviews of Geophysics*, **33**(S1) July 1995, pp. 249-255.

Application #4: Mitigating Road Accidents through appropriate Geometric Road Design

- ✓ There is a significant association between road accidents and road geometry (i.e. road curves radii, road gradients, super elevation, lanes number, lane width, sight distance, crest curves, shoulder width etc.).
- ✓ Road safety can be enhanced by improving road geometric design to mitigate accidents.

Reference: Md Hasibul, I., Teik Hua, L., Hamid, H. and Azarkerdar, A.(2019) Relationship of Accident Rates and Road Geometric Design. *IOP Conference Series: Earth and Environment Science*, **357**(012040).

Final Remarks

- The purpose of the presentation was to enlighten the Surveyors on the subject of "urban resilience" and to illustrate the "applications of Geo-Spatial technologies in urban resilience mgt."
- The Geo-spatial applications enumerated in this presentation are just a handful!! Many more applications can be explored.

